Extremal and Probabilistic Graph Theory March 1st, Tuesday

• Notations.

Graph G = (V, E), where $E \subset V \times V$; Hypergraph H = (V, E), where $E \subset \bigcup_{i \ge 2} \underbrace{V \times \ldots \times V}_{i}$;

 δ minimum degree;

 Δ maximum degree;

 $d = \frac{\sum_{v} d_{v}}{n}$ average degree.

- Definition 1. A k-graph H = (V, E) is a k-uniform hypergraph where each edge $e \in E$ has k vertices.
- **Remark.** We also view e as a subset. |e| = # vertices in e.
- Definition 2. For a subset $S \in V(H)$, define the degree of S, $d_H((S) = \#$ edges with $S \subset e$.
- **Prop 1.** For any hypergraph H and $r \ge 2$,

$$\sum_{e \in E(H)} \binom{|e|}{r} = \sum_{S \in \binom{V}{r}} d_H(S)$$

where $\binom{V}{r} = \{ \text{ all subset of size r in V} \}.$

Proof. By double counting # of (S,e) where |S| = r and $S \subset e$.

- Definition 3. K_n^(k) denotes the complete k-graph on n vertices;
 K^(k)(V₁, V₂,..., V_k) denotes the complete k-partite k-graph on parts V₁, V₂,..., V_k;
 K_{k:t} denotes a copy of K^(k)(V₁, V₂,..., V_k), where each |V_i| = t.
- Definition 4. Let H be a hypergraph, a link hypergraph of a set $S \subset V(H)$ in H is a hypergraph with vertex set $V \setminus S$, and edge set $\{e \setminus S : S \subset e \text{ in } H\}$.
- Definition 5. Let \mathscr{F} be a family of k-graphs. A k-graph H is \mathscr{F} -free if No $F \in \mathscr{F}$ is contained in H. When $\mathscr{F} = \{G\}$, call it G-free.
- Definition 6. Let $ex_k(n, \mathscr{F}) = max \ e(H)$ over all *n*-vertex \mathscr{F} -free *k*-graph *H*. $ex_k(n, \mathscr{F})$ is called Turán function of \mathscr{F} . We write $ex(n, \mathscr{F})$ when k = 2. Turán density of \mathscr{F}

$$\pi(\mathscr{F}) = \lim_{n \to \infty} \frac{ex_k(n, \mathscr{F})}{\binom{n}{k}}$$

• **Prop 2.** $\pi(\mathscr{F})$ exists for all \mathscr{F} .

Proof. Let $\pi_n(\mathscr{F}) = \frac{ex_k(n,\mathscr{F})}{\binom{n}{k}}$. Consider any *n*-vertex \mathscr{F} -free *k*-graph *H*. Let us count # of (e, T), where $T \subset V(H)$ is of size n-1 and $e \subset T$. Fixing *e*, there are $\binom{n-k}{n-k-1}$ choices of *T* and we have

$$#(e,T) = \sum_{e \in E} \binom{n-k}{n-k-1}$$

. On the other hand, there are at most $ex_k(n-1,\mathscr{F})$ edges in T for each T, since T is \mathscr{F} -free. Hence we have $\#(e,T) \leq n \ ex_k(n-1,\mathscr{F})$. We have the following inequality

$$\frac{ex_k(n,\mathscr{F})}{\binom{n}{k}} \leq \frac{n}{(n-k)\binom{n}{k}}ex_k(n-1,\mathscr{F}) = \frac{ex_k(n-1,\mathscr{F})}{\binom{n-1}{k}}$$

By the definition of $\pi_n(\mathscr{F})$, we have $\pi_n \mathscr{F} \leq \pi_{n-1}(\mathscr{F})$. So, $\pi_n(\mathscr{F})$ is a non-increasing sequence, and $\pi_n(\mathscr{F}) \geq 0$. Thus

$$\pi(\mathscr{F}) = \lim_{n \to \infty} \pi_n(\mathscr{F})$$

exists.

- Remark. $0 \le \pi(\mathscr{F}) \le 1$.
- Supersaturation Lemma. Fix $k \ge 2$ and F be a k-graph. For $\forall \epsilon > 0, \exists \delta > 0$, such that if H is an n-vertex k-graph with at least $ex_k(n, F) + \epsilon n^k$ edges, then H contains at least $\delta\binom{n}{\nu(F)}$ copies of F, where $\nu(F) = \#$ vertices of F.

• **Prop 3.**
$$\forall t \ge k \ge 2, \pi(K_t^{(k)}) \le 1 - \frac{1}{\binom{t}{k}}.$$

Proof: $\forall n \ge t, \pi_n(K_t^{(k)}) \le \pi_t(K_t^{(k)}) = 1 - \frac{1}{\binom{t}{k}}.$

• **Prop 4.** $\frac{5}{9} \le \pi(K_4^{(3)}) \le \frac{1}{\sqrt{2}}$.

Proof. 1) upper bound. To prove $\pi(K_4^{(3)}) \leq \frac{1}{\sqrt{2}}$, we need to show all *n*-vertex $K_4(3)$ -free 3-graph *H* has no more than $\frac{1}{\sqrt{2}} {n \choose 3} + o(n^3)$ edges.

Fact. There are at most 3 edges on any 4 vertices .

We will count #subgraph L isomorphic to {123,124} on 4 vertices. By the fact above,each four ser has at most 3 edges and hence has at most 3 copies of L, so we have $\#L \leq 3\binom{n}{4}$. On the other hand, $\#L = \sum_{S \in \binom{V}{2}} \binom{d_H(S)}{2}$. So we have $3\binom{n}{4} \geq \#L = \sum_{S \in \binom{V}{2}} \binom{d_H(S)}{2} \geq \binom{\binom{N}{2}\binom{\binom{N}{2}}{\binom{N}{2}} = \binom{\binom{N}{2}\binom{\binom{N}{2}}{\binom{N}{2}} = \binom{\binom{N}{2}\binom{\binom{N}{2}}{\binom{N}{2}} \Rightarrow e(H) \leq \frac{1}{\sqrt{2}}\binom{\binom{N}{3}}{\binom{N}{3}} + o(n^3)$. (the second inequality holds by Cauchy-Schwarz)

2) lower bound. We need find a *n*-vertex $K_4^{(3)}$ -free 3-graph H with $\frac{5}{9}\binom{n}{3} + o(n^3)$ edges. $V(H) = X \bigcup Y \bigcup Z$, where $X \bigcap Y = Y \bigcap Z = Z \bigcap X = \emptyset$ and $|X| = |Y| = |Z| = \frac{|V(H)|}{3} = \frac{n}{3}$. $E(H) = \{ \text{all edges of type } xyz, \ x_1x_2y, \ y_1y_2z, \ z_1z_2x, \ x \in X, \ y \in Y, \ z \in Z \}$. Check that H is $K_4^{(3)}$ -free and H has $(\frac{n}{3})^3 + 3(\frac{n}{3})(\frac{n}{3}) = \frac{5}{9}\binom{n}{3}$ edges.

• Conjecture. $\pi(K_4^{(3)}) = \frac{5}{9}$.